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Education Medical Operation Finance

……

Embedded Computing Hardware Has Been in Every Corner
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Today, AI is Going to Every Embedded Computing Hardware   
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Agriculture Military Power System Manufacture

Education Medical Operation Finance
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[ref] How a country serious about coronavirus does testing and quarantine. https://www.youtube.com/watch?v=e3gCbkeARbY. [Online; accessed 03/17/2020]
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Challenge Response

Shortage of rRT-PCR test kits Accurate screening

Challenge Response

Shortage of rRT-PCR test kits Accurate screening

Burden on radiologists in reading CT scan results AI judgement to reduce burden

Challenge Response

Shortage of rRT-PCR test kits Accurate screening

Burden on radiologists in reading CT scan results AI judgement to reduce burden

Days of deployment is intolerant Plug-and-play in clinics within Hours

Challenge Response

Shortage of rRT-PCR test kits Accurate screening

Example: Equip AI to Fight COVID-19
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Today’s Solution.
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Matching Datasets/Applications and Neural Networks
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Neural NetworksDatasets / Applications
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One Network cannot Fit All Platforms
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AlexNet
ResNet

MobileNet
NASNet

MnasNet

ProxylessNAS

FBNet

FNAS
EDDNet

◆ Cloud / Server

• Resource Unlimited

• Maximizing Accuracy

• AlexNet, VGGNet, ResNet, …

◆ Mobile Phones

• Fixed Hardware

• Accuracy v.s. Latency

• MnasNet, ProxylessNAS, …

◆ FPGA Accelerators

• Hardware Design Flexibility

• Accuracy, Timing, Energy Efficiency

• FNAS, SkyNet, EDDNet, …

SkyNet
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Manual Design is TOO Expensive

• Domain knowledge and excessive

labor

• It takes too long to devise new 

architectures

Problem

Name Time

AlexNet 2012

ZFNet 2013

VGGNet 2014

RestNet 2015

GoogleNet 2016

1 year for only 1 application

Manual AI Design 
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Manual AI Design 
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Automatic Neural Architecture Search (NAS)

• Low Efficiency, hundreds or even 

thousands of GPU hours

• Mono-Objective: Accuracy

Problem

Automatic NASController 

(RNN)

Train from Scratch

To Obtain Accuracy A

Sample architecture NN 

with probability p

Compute gradient of p and 

scale it by A to update the 

controller 

RL NAS

Reinforcement Learning Based NAS

Name Time

NAS Nov. 2016

NASNet Jul. 2017
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Manual AI Design 
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Differentiable Architecture Search: DARTS

RL NAS

Automatic NAS

DARTS

Name Time

DARTS Jun. 2018
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Manual AI Design 
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Latency-Aware NAS for Mobile Phones

Automatic NAS
Latency-Aware NAS

Controller Trainer
Latency

Predictor

LatencyAccuracy

Latency-Aware NAS

Name Time

MnasNet Jul. 2018

ProxylessNAS Dec. 2018

FBNet Dec. 2018
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Manual AI Design 
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Network-FPGA Co-Design Framework using NAS

Automatic NAS
Latency-Aware NAS

FNAS

Name Time

FNAS (ours) Jan. 2019

DNN/FPGA Apr. 2019

SkyNet Sep. 2019

EDDNet May. 2020

DAC’19 (BEST PAPER NOMINATION)
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Network-CIM Co-Design using NAS
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Name Time

NACIM (ours) Oct. 2019

Accepted by IEEE Trans. on Computers
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Network-ASIC Co-Design using NAS

13

+

X X

+

X X

+

+

X X

+

X X

+

+
SRAM

Name Time

NANDS (ours) Jan. 2020

ASICNAS (ours) Feb. 2020

DAC’20, 69.3, WEDNESDAY July 22
Pedal to the M(eta)L: Accelerating Deep 

Learning to the Next Level

NANDS

ASP-DAC20 (BEST PAPER NOMINATION)
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So far, everything looks good.

What’s the problem?
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Intelligence is Widely Needed in Hardware Devices NOT Platforms
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FPGAPhone
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Manual AI Design 
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Needs of NN for Each Device, Not For Each Platform

Automatic NAS

Latency-Aware NAS

Co-Design NAS

Tens to Hundreds of GPU 
Hour for each device is 

inefficient

WHY INEFFICIENT?

Search from Scratch!
• Cold Start
• Lengthy Training Time
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Rethinking: Why Always Conduct NAS from Cold?

HotNAS: < 3 GPU Hours (ImageNet); < 20 GPU Minutes (CIFAR-10)

Accepted by CODES+ISSS’20
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HotNAS: Search from Hot
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◆ Pave a new ROAD from the 

existing trained NNs (Model 

Zoo) to hardware

v

+ Significantly reduce search time

+ With little or no accuracy loss

+ Guarantee to meet the given 

hardware constraints
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HotNAS: Problem Definition
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Given:

• Pre-trained model zoo

• Hardware design templates

• Design specifications

Search:

• Network architecture hyperparameters

(i.e., # of channel, kernel size, connections, etc.)

• Hardware design hyperparameters 

(i.e., titling parameters, bandwidth, etc.)

• Model compression (i.e., quantization, pruning)

Objective:

• Maximizing accuracy

• Guarantee latency to meet requirements
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HotNAS: iSpace
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HotNAS: iDesign
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HotNAS: iDetect
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HotNAS: iSearch
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Results of HotNAS
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HotNAS for ImageNet
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On ImageNet, comparison of the state-of-the-art neural architectures with timing constraints of 5ms

✓ Can guarantee accommodate the model to hardware to satisfy the timing requirement

✓ Can reduce the GPU time of co-search from 200 hours to less than 3 hours, even using reinforcement learning

✓ Can improve the Top-1 accuracy by 5.79% compared with the existing one that can satisfy hardware constraint
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HotNAS for ImageNet: Push Forward Pareto Frontier
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✓Significantly push forward the Pareto

frontier between the latency and

accuracy tradeoff

✓HotNAS works for all existing models

in the model zoo to reduce the latency

while keeping accuracy
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HotNAS for ImageNet: Results Visualization on ResNet-18
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✓ Different technique for different layers, which

is determined by iSpace.

✓ Hardware design exploration can further

improve performance.
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On CIFAR-10: HotNAS Detail Results
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✓ Improve accuracy

✓ reduce latency

✓Complete the search process in

20 minutes

✓Little or even no accuracy loss
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Conclusion
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SRAM

◆ FNAS, ASICNAS, NACIM

Pave ROADs for NN to 

different platforms.

◆ HotNAS paves a new ROAD 

for pre-trained NN to devices.

◆ Other directions? 

✓ Metrics: Privacy, Robustness, etc.

✓ Applications: Medical, NLP, etc.

✓ Models: RNN, GNN, …

FNAS

ASICNAS

NACIM HotNAS
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NASS: Identifying Secure Inference Architecture via NAS
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D

Privacy and Security Problems: homomorphic encryption & garbled circuits
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NASS: Framework and Results
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• Determination of hyper-parameters and quantization
• Performance Modeling

• Improve accuracy by 3%
• Decrease 2X bandwidth requirement
• Decrease 2X computation time in server side
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Thank You!

HotNAS paper will be put at soon:

http://wjiang.nd.edu


