International Workshop on Research Open Automatic Design for Neural Networks (ROAD4NN)

Efficient Hardware and Neural Architecture Co-Search with Hot Start

—— A New Road for NN to HW (ROAD4NN2HW)

Weiwen Jiang, Ph.D.

Postdoc Research Associate

Department of Computer Science and Engineering

University of Notre Dame

wjiang2@nd.edu | https://wjiang.nd.edu

A series of ROAD4NN2HW works are conducted at Univ. of Notre Dame in **Prof. Yiyu Shi's** group and Univ. of Pittsburgh in **Prof. Jingtong Hu's** group

NOTRE DAME | COLLEGE OF ENGINEERING

Embedded Computing Hardware Has Been in Every Corner

Agriculture

Military

Power System

Manufacture

Education

Medical Operation

Finance

.

Today, AI is Going to Every Embedded Computing Hardware UNIVERSITY OF NOTRE DAME

Agriculture

Military

Power System

Manufacture

Education

Medical Operation

Finance

....

Challenge	Response		
Shortage of rRT-PCR test kits	<u>Accurate</u> screening		
Burden on radiologists in reading CT scan results	<u>AI</u> judgement to reduce burden		
Days of deployment is intolerant	Plug-and-play in clinics within <u>Hours</u>		

[ref] How a country serious about coronavirus does testing and quarantine. https://www.youtube.com/watch?v=e3gCbkeARbY. [Online; accessed 03/17/2020]

Weiwen Jiang

Today's Solution.

111111

Matching Datasets/Applications and Neural Networks

Datasets / Applications

Manual Design is **<u>TOO</u>** Expensive

1 year for only 1 application

Name	Time
AlexNet	2012
ZFNet	2013
VGGNet	2014
RestNet	2015
GoogleNet	2016

Problem

- Domain knowledge and excessive labor
- It takes too long to devise new architectures

So far, everything looks good. What's the problem?

Intelligence is Widely Needed in Hardware Devices <u>NOT</u> Platforms

Rethinking: Why Always Conduct NAS from Cold?

HotNAS: < 3 GPU Hours (ImageNet); < 20 GPU Minutes (CIFAR-10)

Accepted by CODES+ISSS'20

HotNAS: Search from Hot

 Pave a new ROAD from the existing trained NNs (Model Zoo) to hardware

- + Significantly reduce search time
- + With little or no **accuracy** loss
- + Guarantee to meet the given hardware constraints

HotNAS: Problem Definition

Given:

- Pre-trained model zoo
- Hardware design templates
- Design specifications

Search:

- Network architecture hyperparameters
 (i.e., # of channel, kernel size, connections, etc.)
- Hardware design hyperparameters (*i.e.*, *titling parameters*, *bandwidth*, *etc.*)
- Model compression (i.e., quantization, pruning)

Objective:

- Maximizing accuracy
- Guarantee latency to meet requirements

HotNAS: iSpace

NOTRE DAME

HotNAS: iDesign

Weiwen Jiang

HotNAS: iDetect

Property 2: Given a layer and design parameters, we can detect the performance bottlenecks by considering Lat_1 and Lat_2 as follows:

- O: if Lat_2 is dominated by tO_{mem} , the performance bottleneck is on transmitting OFM data, otherwise,
- I: if Lat_1 is dominated by tI_{mem} , the performance bottleneck is on transmitting IFM data,
- W: if Lat_1 is dominated by tW_{mem} , the performance bottleneck is on transmitting weights,
- C: if Lat₁ is dominated by tComp, we have fully utilized the involved computation resource.

HotNAS: iSearch

Results of HotNAS

HotNAS for ImageNet

On ImageNet, comparison of the state-of-the-art neural architectures with timing constraints of 5ms

Model	Туре	Latency	Sat.	Param. (#)	Param. (S)	Top-1	Top-5	Top-1 Imp.	Top-5 Imp.	GPU Time
AlexNet	manually	2.02	\checkmark	61.1M	122.20MB	56.52%	79.07%	-	-	-
MnasNet 0.5 *	auto	3.99	\checkmark	2.22M	4.44MB	67.60%	87.50%	-	-	40,000H
SqueezeNet 1.0	manually	4.76	\checkmark	1.25M	2.50MB	58.09%	80.42%	-	-	-
ProxylessNAS	auto	5.83	×	4.08M	8.16MB	74.59%	92.20%	-	-	200H
MnasNet	auto	5.94	×	4.38M	8.77MB	73.46%	91.51%	-	-	40,000H
Resnet	manually	6.27	×	11.69M	23.38MB	69.76%	89.08%	-	-	-
HotNAS-Resnet(4ms)	auto	4.00	\checkmark	10.99M	17.49MB	68.27%	88.21%	0.67%	0.71%	2H22M
HotNAS-Resnet	auto	4.22	\checkmark	11.19M	17.90MB	69.14%	88.83%	1.54%	1.33%	2H01M
HotNAS-ProxylessNAS	auto	4.86	\checkmark	4.38M	8.31MB	73.39%	91.47%	5.79%	3.97%	2H37M
HotNAS-Mnasnet	auto	4.99	\checkmark	4.07M	6.56MB	73.24%	91.37%	5.64%	3.87%	1H50M

"*": baseline; "auto & manually": the model identified by NAS or human experts; "× & ✓": violate or meet timing constraints.

✓ Can guarantee accommodate the model to hardware to **satisfy the timing requirement**

Can reduce the GPU time of co-search from 200 hours to less than 3 hours, even using reinforcement learning
 Can improve the Top-1 accuracy by 5.79% compared with the existing one that can satisfy hardware constraint

HotNAS for ImageNet: Push Forward Pareto Frontier

- ✓ Significantly push forward the Pareto frontier between the latency and accuracy tradeoff
- ✓ HotNAS works for all existing models in the model zoo to reduce the latency while keeping accuracy

UNIVERSITY OF NOTRE DAME

HotNAS for ImageNet: Results Visualization on ResNet-18

Layers/HW	iDetect	iSpace	Exploration Results	Red. (ms)
layer1[0].conv1 layer1[0].conv2 layer1[1].conv1 layer1[1].conv2 layer2[0].conv2 layer2[1].conv1 layer2[1].conv2	С	Pattern	PATr=3, PATn=4	0.57
layer4[0].conv1 layer4[1].conv1	Ι	Channel	$\begin{array}{c} 512 \rightarrow 480 \\ 512 \rightarrow 496 \end{array}$	0.15
layer4[0].conv1 layer4[1].conv1 layer4[0].conv2 layer4[1].conv2	- - W	Quant.	$[1, 15] \to [1, 7]$	1.01
$I_b \\ W_b$	_	HW	$\begin{array}{c} 18 \rightarrow 20 \\ 6 \rightarrow 5 \end{array}$	0.32
		Total		2.05

✓ Different technique for different layers, which is determined by iSpace.

✓ Hardware design exploration can further improve performance.

On CIFAR-10: HotNAS Detail Results

Model		Accuracy		Latency (ms)			
Widdei	baseline	HotNAS	comp.	baseline	HotNAS	impr.	
ResNet	93.33%	93.36%	+0.03%	3.44	1.93	43.90%	
DenseNet	94.14%	94.19%	+0.05%	4.01	2.87	28.55%	
MobileNet	94.17%	94.27%	+0.10%	2.14	1.79	16.74%	
BiTNet	97.07%	97.13%	+0.06%	6.88	3.56	48.26%	

✓ Improve accuracy

✓ reduce latency

Model	1-	epoch-sea	arch	fast-search			
widder	Accuracy	Latency	GPU Time	Accuracy	Latency	GPU Time	
ResNet	93.36%	1.93	7M21S	92.74%	1.84	3M26S	
DenseNet	94.08%	2.79	55M26S	94.19%	2.87	12M04S	
MobileNet	94.27%	1.79	20M15S	94.21%	1.79	4M26S	
BiTNet	97.13%	3.56	2H20M	97.04%	3.84	18M44S	

✓ Complete the search process in 20 minutes

 \checkmark Little or even no accuracy loss

Conclusion

FNAS, ASICNAS, NACIM
 Pave ROADs for NN to

different platforms.

- HotNAS paves a new ROAD for pre-trained NN to devices.
- Other directions?
 - ✓ Metrics: Privacy, Robustness, etc.
 - ✓ Applications: Medical, NLP, etc.
 - ✓ Models: RNN, GNN, ...

Reference (1)

NOTRE DAME

[1] W. Jiang, L. Yang, S. Dasgupta, J. Hu and Y. Shi, "Standing on the Shoulders of Giants: Hardware and Neural Architecture Co-Search with Hot Start", Accepted by **CODES+ISSS 2020**

[2] W. Jiang, Q. Lou, Z. Yan, L. Yang, J. Hu, X. S. Hu and Y. Shi, "Device-Circuit-Architecture Co-Exploration for Computingin-Memory Neural Accelerators", IEEE Transactions on Computers (**TC**), Accepted, 2020.

[3] W. Jiang, L. Yang, E. H.-M. Sha, Q. Zhuge, S. Gu, S. Dasgupta, Y. Shi and J. Hu, "Hardware/Software Co-Exploration of Neural Architectures", IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems (TCAD), Accepted, 2020.
[4] L. Yang, Z. Yan, M. Li, H. Kwon, L. Lai, T. Krishana, V. Chandra, W. Jiang, and Y. Shi, "Co-Exploration of Neural Architectures and Heterogeneous ASIC Accelerator Designs Targeting Multiple Tasks", Accepted by DAC 2020.

[5] B. Song, W. Jiang, Q. Lu, Y. Shi and T. Sato, "NASS: Optimizing Secure Inference via Neural Architecture Search", Accepted by ECAI 2020.

[6] X. Yan, W. Jiang, Y. Shi and C. Zhuo, "MS-NAS: Multi-Scale Neural Architecture Search for Medical Image Segmentation," Accepted by **MICCAI 2020**

[7] L. Yang, W. Jiang, W. Liu, E. H.-M. Sha, Y. Shi and J. Hu, "Co-Exploring Neural Architecture and Network-on-Chip Design for Real-Time Artificial Intelligence", Proc. Asia and South Pacific Design Automation Conference (**ASP-DAC**), Beijing, Jan. 2020 (BEST PAPER NOMINATION)

[8] W. Jiang, E. H.-M. Sha, X. Zhang, L. Yang, Q. Zhuge, Y. Shi and J. Hu, "Achieving Super-Linear Speedup across Multi-FPGA for Real-Time DNN Inference", **CODES+ISSS'19 (BEST PAPER NOMINATION)**

[9] W. Jiang, X. Zhang, E. H.-M. Sha, L. Yang, Q. Zhuge, Y. Shi, and J. Hu, "Accuracy vs. Efficiency: Achieving Both through FPGA-Implementation Aware Neural Architecture Search", **DAC'19 (BEST PAPER NOMINATION)**

NOTRE DAME **NASS: Identifying Secure Inference Architecture via NAS** VITA CADR **Privacy and Security Problems:** homomorphic encryption & garbled circuits [v] input image (u) [u] decrypt from [v] memory Bob (client) **G** Alice (server) HE HE secure CNN ReLU FC Conv Inference

NASS: Framework and Results

- Determination of hyper-parameters and quantization
- Performance Modeling

	Gazelle		Best Searched by NASS			
Layer	Dimension	Quant.	Layer	Dimension	Quant.	
CR	$(64 \times 3 \times 3)$	23	CR	$(24 \times 5 \times 3)$	(8, 8)	
CR	$(64 \times 3 \times 3)$	23	CR	$(48 \times 3 \times 5)$	(6, 7)	
PL	(2×2)	23	PL	(2×2)	(8, 8)	
CR	$(64 \times 3 \times 3)$	23	CR	$(48 \times 5 \times 7)$	(7, 6)	
CR	$(64 \times 3 \times 3)$	23	CR	$(36 \times 3 \times 3)$	(6, 5)	
PL	(2×2)	23	PL	(2×2)	(8, 8)	
CR	$(64 \times 3 \times 3)$	23	CR	$(24 \times 7 \times 1)$	(4, 6)	
CR	$(64 \times 3 \times 3)$	23				
\mathbf{FC}	(1024×10)	23	FC	(1024×10)	(16, 16)	
	Accuracy: 81.6%	6	Accuracy: 84.6%			
Ban	dwidth: $1.815 \mathrm{G}$	Bytes	Bandwidth: 977 MB			
F	PAHE Time: 3.2	2 s	PAHE Time: 1.62 s			
	GC Time: 13.2	s	GC Time: $6.38 \mathrm{s}$			
r	Total Time: 16.4	ls	Total Time: $8.0 \mathrm{s}$			

- Improve accuracy by 3%
- Decrease 2X bandwidth requirement
- Decrease 2X computation time in server side

Reference (2)

NOTRE DAME

[1] Zoph, B. and Le, Q.V., 2016. Neural architecture search with reinforcement learning. arXiv preprint arXiv:1611.01578.

[2] Zoph, B., Vasudevan, V., Shlens, J. and Le, Q.V., 2018. Learning transferable architectures for scalable image recognition. CVPR'18

[3] Liu, H., Simonyan, K. and Yang, Y., 2018. Darts: Differentiable architecture search. arXiv preprint arXiv:1806.09055.

[4] Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A. and Le, Q.V., 2019. Mnasnet: Platform-aware neural architecture search for mobile. CVPR'19.

[5] Cai, H., Zhu, L. and Han, S., 2018. Proxylessnas: Direct neural architecture search on target task and hardware. arXiv preprint arXiv:1812.00332.

[6] Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia, Y. and Keutzer, K., 2019. Fbnet: Hardwareaware efficient convnet design via differentiable neural architecture search. In CVPR'19.

[7] Zhang, X., Lu, H., Hao, C., Li, J., Cheng, B., Li, Y., Rupnow, K., Xiong, J., Huang, T., Shi, H. and Hwu, W.M., 2019. Skynet: a hardware-efficient method for object detection and tracking on embedded systems. arXiv preprint arXiv:1909.09709.

[8] Hao, C., Zhang, X., Li, Y., Huang, S., Xiong, J., Rupnow, K., Hwu, W.M. and Chen, D., 2019, June. FPGA/DNN Co-Design: An Efficient Design Methodology for 1oT Intelligence on the Edge. In DAC'19

[9] Li, Y., Hao, C., Zhang, X., Liu, X., Chen, Y., Xiong, J., Hwu, W.M. and Chen, D., 2020. EDD: Efficient Differentiable DNN Architecture and Implementation Co-search for Embedded AI Solutions. arXiv preprint arXiv:2005.02563.

Thank You!

HotNAS paper will be put at soon:

http://wjiang.nd.edu

