Machine Learning on Quantum Computing: From Classical to Quantum

(Week 4 – Session 2)

Weiwen Jiang, Ph.D.

Postdoc Research Associate

Department of Computer Science and Engineering

University of Notre Dame

wjiang2@nd.edu | https://wjiang.nd.edu

NOTRE DAME | COLLEGE OF ENGINEERING

Review of Previous Session --- Goal 1: Implementing Perceptron Correctly!

Have a Try on $PreP + U_P + U_N + M + PostP$!

Given inputs and weights

Weiwen Jiang

Goal 2: Implementing Feedforward Net w/ Non-Linearity, w/o Measurement!

Goal 3: Implementing Perceptron to Quantum Efficiently!

$$O = \delta\left(\sum_{i \in [0,N)} x_i \times W_i\right)$$

where δ is a quadratic non-linear function

Neural Computation with input size of 2^N on classical computer

Operation: Multiplication: **0**(**N**) Accumulation: **0**(**N**)

Neural Computation with input size of 2^N on quantum computer

Quantum Gates: *O*(*ploylogN*), say *O*(*log*²*n*)?

Organization of Quantum Machine Learning Sessions

- Background and Motivation [w4s1]
 - What is machine learning
 - Why using quantum computer
 - Our goals
- General Framework and Case Study² (Tutorial on GitHub³) [w4s1- w4s2]
 - Implementing neural network accelerators: from classical to quantum
 - A case study on MNIST dataset
- Optimization towards Quantum Advantage¹ (Nature Communications) [w4s2]
 - The existing challenges
 - The proposed co-design framework: QuantumFlow

References:

[1] W. Jiang, et al. <u>A Co-Design Framework of Neural Networks and Quantum Circuits Towards Quantum Advantage</u>, Nature Communications

[2] W. Jiang, et al. <u>When Machine Learning Meets Quantum Computers: A Case Study</u>, ASP-DAC'21

[3] W. Jiang, <u>Github Tutorial on Implementing Machine Learning to Quantum Computer using IBM Qiskit</u>

G1

Challenge 1: Non-linearity is Needed, But Difficult in Quantum Circuit

Weiwen Jiang

Challenge 2: Quantum-Classical Interface is Expensive

Table 2 Complexity of each step in hybrid quantum-classical computing for deep neural network with U-LYR.

Complexity	State-preparation	Computation	Measurement
Depth (T)	$O(d \cdot \sqrt{n})$	$O(d \cdot \log^2 n)$	O(d)
Qubits (S)	O(n)	$O(n \cdot \log n)$	$O(n \cdot \log n)$
Cost (TS)	$O(d \cdot n^{\frac{3}{2}})$	$O(d \cdot n \cdot \log^3 n)$	$O(d \cdot n \cdot \log n)$
Total (TS)	$O(d \cdot n^{\frac{3}{2}})$	-	

Quantum \leftrightarrow Classical Computing \leftrightarrow Quantum

[1] W. Jiang, et al. <u>A Co-Design Framework of Neural Networks and Quantum Circuits Towards Quantum Advantage</u>, Nature Communications

Challenge 3: High Complexity in the Previous Design

Co-Design Framework

[1] W. Jiang, et al. <u>A Co-Design Framework of Neural Networks and Quantum Circuits Towards Quantum Advantage</u>, Nature Communications

Design Direction 1: NN → Quantum Circuit

Design Direction 2: Quantum Circuit \rightarrow **NN**

(N.

Design Direction 3: NN → **Quantum Circuit**

IBM Qiskit Hands-On Course at ND in 20-21 Winter Break

Weiwen Jiang

Still Apply Our Framework to Design Quantum Circuit

(1) Data Pre-Processing (*PreP*)
(2) HW/Quantum Acceleration
(2.1) *rvU*_p Quantum-State-Preparation
(2.2) *rvU*_N Quantum Neural Computation
(2.3) *M* Measurement
(3) Data Post-Processing (*PostP*)

rvU_P --- Data Encoding / Quantum State Preparation

- **Given:** A vector of input data, ranging from [0,1] (do scaling in *PreP* if range out of [0,1])
- **Do:** Applying rotation gate to encode each data to one qubits
- **Output:** A quantum circuit, where the probability of each qubit to be $|1\rangle$ is the same as the corresponding input data

[1] W. Jiang, et al. A Co-Design Framework of Neural Networks and Quantum Circuits Towards Quantum Advantage, Nature Communications

rvU_N --- Neural Computation

- **Given:** (1) A circuit with encoded input data *x*; (2) the trained binary weights *w* for one neural computation, which will be associated to each data.
- **Do:** Place quantum gates on qubits, such that it performs $\frac{(x*w)^2}{\|x\|^2}$, where x are random variables

- Assumption 1: Parameters/weights (W₀ --- W_N) are binary weight, either +1 or -1
- Assumption 2: The weight $W_0 = +1$, otherwise we can use -w (quadratic func.)

Step 1:
$$m_i = x_i \times w_i$$

Target: $O = \left[\frac{\sum_{i} (x_i \times w_i)}{\|x\|} \right]^{2}$

 W_N

Step 2:
$$n = \begin{bmatrix} \sum_{i} (m_i) \\ \|x\| \end{bmatrix}$$

Step 1: $m_i = x_i \times w_i$

+

Weiwen Jiang

rvU_N --- Neural Computation: Step 2

Step 2:
$$n = \left[\frac{\sum_{i}(m_i)}{\|x\|}\right]$$

EX: 2 input data on 2 qubits

r.v.	-1 (1>)	+1 ($ 0 angle$)
m_0	p_0	q_0
m_1	p_1	q_1

r.v.	-1	0	+1
n	$p_0 p_1$	$p_0q_1 + p_1q_0$	$q_{0}q_{1}$

IBM Qiskit Hands-On Course at ND in 20-21 Winter Break

rvU_N --- Neural Computation: Step 2

Step 2:
$$n = \left[\frac{\sum_{i}(m_i)}{\|x\|}\right]$$

EX: 2 input data on 2 qubits

r.v.	-1 (1>)	+1 ($ 0 angle$)
m_0	p_0	q_0
m_1	p_1	q_1

r.v.	-1	0	+1
n	$p_0 p_1$	$p_0q_1 + p_1q_0$	q_0q_1

rvU_N ---- Neural Computation: Step 2

Step 2:
$$n = \left[\frac{\sum_{i}(m_i)}{\|x\|}\right]$$

EX: 2 input data on 2 qubits

r.v.	-1 (1>)	+1 ($ 0 angle$)
m_0	p_0	q_0
m_1	p_1	q_1

r.v.	-1	0	+1
n	$p_0 p_1$	$p_0q_1 + p_1q_0$	$q_{0}q_{1}$

Weiwen Jiang

 rvU_N --- Neural Computation

Implementing Feedforward Net w/ Non-Linearity, w/o Measurement!

Tutorial 3: $PreP + U_P + U_N + M + PostP$

https://github.com/weiwenjiang/QML_tutorial/blob/main/Tutorial_3_Full_MNIST_Prediction.ipynb

Challenge 3: High Complexity in the Previous Design

Cost Complexity

Classical Computing								
No Parallelism Full Parallelism								
Time (T)	O(<i>N</i>)	O(1)						
Space (S)	O(1)	O(<i>N</i>)						
Cost (TS)	O(<i>N</i>)	O(<i>N</i>)						

Quantum Computing									
Previous Design Optimization									
Circuit Depth (T)	O(<i>N</i>)	???							
Qubits (S)	$O(\log N)$	O(N)							
Cost (TS)	$O(N \cdot \log N)$	target O(ploylog N)							

IBM Qiskit Hands-On Course at ND in 20-21 Winter Break

 $[0, 0.59, 0, 0, 0, 0.07, 0, 0, 0.66, 0.33, 0.33, 0, 0, 0, 0]^T$

QuantumFlow: Taking NN Property to Design QC

$(v_o; v_{x1}; v_{x2}; ...; v_{xn}) \times \begin{pmatrix} 1\\ 0\\ ...\\ 0 \end{pmatrix} = (v_0)$

 $S1 = [0, 0.59, 0, 0, 0, 0.07, 0, 0, 0.66, 0.33, 0.33, 0, 0, 0, 0]^T$

S1 -> S2:

SO -> S1:

 $W = [+1, -1, +1, +1, -1, -1, +1, +1, +1, -1, -1, +1, +1, -1, +1]^{T}$ |0000> |0001> |0010> |0011> |0100> |0111> |0110> |0111> |1000> |1011> |1010> |1011> |1100> |1111> |1100> |1111> $S2 = [0, -0.59, 0, 0, -0, -0.07, 0, 0, 0, -0.66, -0.33, 0.33, 0, -0, 0, 0]^{T}$

Implementation 2:

Implementation 1 (example in Quirk):

[ref] Tacchino, F., et al., 2019. An artificial neuron implemented on an actual quantum processor. *npj Quantum Information*, 5(1), pp.1-8.

QuantumFlow: Taking NN Property to Design QC

Property from NN

- The **weight order** is not necessary to be fixed, which can be adjusted if the order of inputs are adjusted accordingly
- **Benefit:** No need to require the positions of sign flip are exactly the same with the weights; instead, only need the number of signs are the same.

 $S1 = [0, 0.59, 0, 0, 0, 0.07, 0, 0, 0.66, 0.33, 0.33, 0, 0, 0, 0]^{T}$ ori + - + + fin - + + - $S1' = [0, 0.59, 0, 0.33, 0.33, 0.07, 0, 0, 0.66, 0, 0, 0, 0, 0, 0]^{T}$

QuantumFlow: Taking NN Property to Design QC

Algorithm 4: QF-Map: weight mapping algorithm
Input: (1) An integer $R \in (0, 2^{k-1}]$; (2) number of qbits k ; Output: A set of applied gate G
void recursive (G, R, k) {
if $(R < 2^{k-2})$ {
recursive($G, R, k-1$); // Case 1 in the third step
}
else if $(R = 2^{k-1})$ {
$G.append(PG_{2^{k-1}})$; // Case 2 in the third step
return;
}else{
$G.append(PG_{2^{k-1}});$
recursive $(G, 2^{k-1} - R, k-1)$; // Case 3 in the third step
}
}
// Entry of weight mapping algorithm
set main (R,k) {
Initialize empty set G;
recursive (G,R,k) ;
return G
}
(n) - (n)

Used gates and Costs

Gates	Cost
Z	1
CZ	1
C ² Z	3
C ³ Z	5
C ⁴ Z	6
C ^k Z	2k-1

Worst case: all gates

QuantumFlow Results

U-LYR Achieves Quantum Advantages

[ref] Tacchino, F., et al., 2019. An artificial neuron implemented on an actual quantum processor. npj Quantum Information, 5(1), pp.1-8.

	Str	uctu	ire	Μ	LP(C)		FFN	NN(Q))		QF-	hNet((Q)
Dataset	In	L1	L2	L1	L2	Tot.	L1	L2	Tot.	Red.	L1	L2	Tot.	Red.
{1,5}	16	4	2				80	38	118	1.27 ×	74	38	112	1.34 ×
{3,6}	16	4	2	120	10	150	96	38	134	1.12 ×	58	38	96	1.56 ×
{3,8}	16	4	2	132	18	150	76	34	110	1.36 ×	58	34	92	1.63 ×
{3,9}	16	4	2				98	42	140	1.07 imes	68	42	110	1.36 ×
{0,3,6}	16	8	3	264	51	315	173	175	348	0.91 ×	106	175	281	1.12 ×
{1,3,6}	16	8	3	204	51	515	209	161	370	0.85 imes	139	161	300	1.05 ×
{0,3,6,9}	64	16	4	2064	132	2196	1893	572	2465	0.89 ×	434	572	1006	2.18 ×
{0,1,3,6,9}	64	16	5	2064	165	2220	1809	645	2454	0.91 ×	437	645	1082	2.06 ×
$\{0,1,2,3,4\}$	64	16	5	2004	103	<i>LLL</i> 9	1677	669	2346	0.95 ×	445	669	1114	2.00 ×
{0,1,3,6,9}	256	8	5	4104	85	4189	5030	251	5281	0.79 ×	135	251	386	10.85×

*: Model with 16×16 resolution input for dataset {0,1,3,6,9} to test scalability, whose accuracy is 94.09%, which is higher than 8×8 input with accuracy of 92.62%.

[ref of FFNN] Tacchino, F., et al., 2019. Quantum implementation of an artificial feed-forward neural network. *arXiv preprint arXiv:1912.12486*.

QF-Nets Achieve the Best Accuracy on MNIST

Dataset	w/o BN					w/ BN				
	binMLP(C)	FFNN(Q)	MLP(C)	QF-pNet	QF-hNet	binMLP(C)	FFNN(Q)	MLP(C)	QF-pNet	QF-hNet
1,5	61.47%	61.47%	69.12%	69.12%	90.33%	55.99%	55.99%	85.30%	84.56%	96.60%
3,6	72.76%	72.76%	94.21%	91.67%	97.21%	72.76%	72.76%	96.29%	96.39%	97.66%
3,8	58.27%	58.27%	82.36%	82.36%	89.77%	58.37%	58.07%	86.74%	86.90%	87.20%
3,9	56.71%	56.51%	68.65%	68.30%	95.49%	56.91%	56.71%	80.63%	78.65%	95.59%
0,3,6	46.85%	51.63%	49.90%	59.87%	89.65%	50.68%	50.68%	75.37%	78.70%	90.40%
1,3,6	60.04%	59.97%	53.69%	53.69%	94.68%	59.59%	59.59%	86.76%	86.50%	92.30%
0,3,6,9	72.68%	72.33%	84.28%	87.36%	92.85%	69.95%	68.89%	82.89%	76.78%	93.63%
0,1,3,6,9	50.00%	51.10%	49.00%	43.24%	87.96%	60.96%	69.46%	70.19%	71.56%	92.62%
0,1,2,3,4	46.96%	50.01%	49.06%	52.95%	83.95%	64.51%	69.66%	71.82%	72.99%	90.27%

[ref of FFNN] Tacchino, F., et al., 2019. Quantum implementation of an artificial feed-forward neural network. *arXiv preprint arXiv:1912.12486*.

On Actual IBM "ibmq_essex" Quantum Processor

Thank You!

wjiang2@nd.edu

